viernes, 19 de mayo de 2017

SEMANA 3

PROBABILIDAD CONDICIONAL E INDEPENDENCIA:

Es la probabilidad de que ocurra un evento A, sabiendo que también sucede otro evento B. La probabilidad condicional se escribe P(A|B), y se lee «la probabilidad de A dado B».


No tiene por qué haber una relación causal o temporal entre A y BA puede preceder en el tiempo a B, su-cederlo o pueden ocurrir simultáneamente. A puede causar B, viceversa o pueden no tener relación causal. Las relaciones causales o temporales son nociones que no pertenecen al ámbito de la probabilidad. Pueden desempeñar un papel o no dependiendo de la interpretación que se le dé a los eventos.
Un ejemplo clásico es el lanzamiento de una moneda para luego lanzar un dado. ¿Cuál es la probabilidad que en el dado salga un 6 dado que ya haya salido una cara en la moneda? Esta probabilidad se denota de esta manera: P(6|C).


Dado un espacio de probabilidad  y dos eventos (o sucesos)  con , la probabilidad condicional de A dado B está definida como:
P(A \mid B) = \frac{P(A \cap B)}{P(B)}.




TEOREMA DE BAYES


El teorema de Bayes es de enorme relevancia puesto que vincula la probabilidad de A dado B con la probabilidad de B dado A. Es decir, por ejemplo, que sabiendo la probabilidad de tener un dolor de cabeza dado que se tiene gripe, se podría saber (si se tiene algún dato más), la probabilidad de tener gripe si se tiene un dolor de cabeza. Muestra este sencillo ejemplo la alta relevancia del teorema en cuestión para la ciencia en todas sus ramas, puesto que tiene vinculación íntima con la comprensión de la probabilidad de aspectos causales dados los efectos observados.

Sea  un conjunto de sucesos mutuamente excluyentes y exhaustivos, y tales que la probabilidad de cada uno de ellos es distinta de cero (0). Sea B un suceso cualquiera del que se conocen las probabilidades condicionales . Entonces, la probabilidad  viene dada por la expresión:
donde:
  •  son las probabilidades a priori,
  •  es la probabilidad de  en la hipótesis ,
  •  son las probabilidades a posteriori.



EJEMPLOS

En una familia con dos hijos, se desea calcular las siguientes probabilidades: 
 a) La probabilidad de que los dos hijos sean varones.
 b) La probabilidad de que si uno de los hijos es varón, los dos lo sean.

SOLUCION

Sean A: el evento de que los dos hijos sean varones, y B: el evento de que al menos uno de los hijos sea varón. 
a) Si observamos en el espacio muestral S = { (h, h), (h, m), (m, h), (m, m) } y consideramos que todos los eventos simples son igualmente probables, es claro que P ( A ) = 1 / 4 = 0.25 y P ( B ) = 3 / 4 = 0.75 
b) Se desea calcular P ( A ⏐B ). Utilizando la definición de probabilidad condicional se obtiene P ( A ⏐B ) = 3 1 3/4 1/4 P ( B ) P ( A B ) = = ∩ P ( A ⏐B ) = 1 / 3


viernes, 5 de mayo de 2017

semana 2

TEORIA DE CONJUNTOS

La teoría de conjuntos es una rama de las matematicas  que estudia las propiedades y relaciones de los conjuntos: colecciones abstractas de objetos, consideradas como objetos en sí mismas. Los conjuntos y sus operaciones más elementales son una herramienta básica en la formulación de cualquier teoría matemática.1
La teoría de los conjuntos es lo suficientemente rica como para construir el resto de objetos y estructuras de interés en matemáticas: numeros, funciones, figuras geometricas,...; y, junto con la logica, permite estudiar los fundamentos de aquella. En la actualidad se acepta que el conjunto de axiomas de la teoría de Zermelo-Fraenkel es suficiente para desarrollar toda la matemática.
Además, la propia teoría de conjuntos es objeto de estudio per se, no sólo como herramienta auxiliar, en particular las propiedades y relaciones de los conjuntos infinitos. En esta disciplina es habitual que se presenten casos de propiedades indemostrables o contradictorias, como la hipótesis del continuo o la existencia de un cardinal inaccesible. Por esta razón, sus razonamientos y técnicas se apoyan en gran medida en la lógica.
El desarrollo histórico de la teoría de conjuntos se atribuye a Georg Cantor, que comenzó a investigar cuestiones conjuntistas «puras» del infinito en la segunda mitad del siglo XIX, precedido por algunas ideas de Bernhard Bolzano e influido por Richard Dedekind. El descubrimiento de las paradojas de la teoría cantoriana de conjuntos, formalizada por Gottlob Frege, propició los trabajos de Bertrand RussellErnst ZermeloAbraham Fraenkel y otros a principios del siglo XX

La teoría de conjuntos más elemental es una de las herramientas básicas del lenguaje matemático. Dados unos elementos, unos objetos matemáticos como números o polígonos por ejemplo, puede imaginarse una colección determinada de estos objetos, un conjunto. Cada uno de estos elementos pertenece al conjunto, y esta noción de pertenencia es la relación relativa a conjuntos más básica. Los propios conjuntos pueden imaginarse a su vez como elementos de otros conjuntos. La pertenencia de un elemento a a un conjunto A se indica como a  A.
Una relación entre conjuntos derivada de la relación de pertenencia es la relación de inclusión. Una subcolección de elementos B de un conjunto dado A es un subconjunto de A, y se indica como B  A.
Existen unas operaciones básicas que permiten manipular los conjuntos y sus elementos, similares a las operaciones aritméticas, constituyendo el álgebra de conjuntos:
  • Unión. La unión de dos conjuntos A y B es el conjunto A  B que contiene cada elemento que está por lo menos en uno de ellos.
EJEMPLO:
La unión de 2 conjuntos A y B se nota como A ∪ B y es el conjunto de todos los elementos de A y B.
Ejemplo 
{1, 2} ∪ {rojo, blanco} ={1, 2, rojo, blanco}.
Algunas propiedades básicas de la unión:

* A ∪ B = B ∪ A.
* A ∪ (B ∪ C) = (A ∪ B) ∪ C.
* A ⊆ (A ∪ B).
* A ∪ A = A.
* A ∪ ∅ = A.
* A ⊆ B if si y solo si A ∪ B = B.

  • Intersección. La intersección de dos conjuntos A y B es el conjunto A  B que contiene todos los elementos comunes de A y B.
EJEMPLO:

 {1, 2} ∩ {rojo, blanco} = ∅.
* {1, 2, verde} ∩ {rojo, blanco, verde} = {verde}.
* {1, 2} ∩ {1, 2} = {1, 2}

Algunas propiedades básicas de las intersecciones:

* A ∩ B = B ∩ A.
* A ∩ (B ∩ C) = (A ∩ B) ∩ C.
* A ∩ B ⊆ A.
* A ∩ A = A.
* A ∩ ∅ = ∅.
* A ⊆ B if si y solo si A ∩ B = A.

  • Diferencia. La diferencia entre dos conjuntos A y B es el conjunto A \ B que contiene todos los elementos de A que no pertenecen a B.
  • Complemento. El complemento de un conjunto A es el conjunto A que contiene todos los elementos (respecto de algún conjunto referencial) que no pertenecen a A.
  • Diferencia simétrica La diferencia simétrica de dos conjuntos A y B es el conjunto A Δ B con todos los elementos que pertenecen, o bien a A, o bien a B, pero no a ambos a la vez.
  • Producto cartesiano. El producto cartesiano de dos conjuntos A y B es el conjunto A × B que contiene todos los pares ordenados (ab) cuyo primer elemento a pertenece a A y su segundo elemento b pertenece a B.

La teoría Axiomática

La necesidad de la teoría axiomática radica en las limitaciones que existen en la definición de conjunto y en la existencia de algunas "paradojas" amplamente trabajadas por algunos de los más importantes matemáticos.
La paradoja de Russel Muestra que el conjunto de todos los conjuntos que no se contienen a sí mismos no existe.
La paradoja de Cantor Muestra que el conjunto de todos los conjuntos no puede existir.



BIBLIOGRAFIA:




domingo, 30 de abril de 2017

semana 1

TECNICAS DE CONTEO
El principio fundamental en el proceso de contar ofrece un método general para contar el numero de posibles arreglos de objetos dentro de un solo conjunto o entre varios conjuntos. Las técnicas de conteo son aquellas que son usadas para enumerar eventos difíciles de cuantificar.
Si un evento A puede ocurrir de n1 maneras y una vez que este ha ocurrido, otro evento B pueden n2 maneras diferentes entonces, el numero total de formas diferentes en que ambos eventos pueden ocurrir en el orden indicado, es igual  a n1x n2.
DIAGRAMA DE ARBOL:
Es una representación gráfica de los posibles resultados del experimento, el cual consta de una serie de pasos, donde cada uno de estos tiene un número finito de maneras de ser llevado a cabo. Se utiliza en los problemas de conteo y probabilidad.

PRINCIPIO DE LA MULTIPLICACION:
Si se desea realizar una actividad que consta de r pasos, en donde el primer paso de la actividad a realizar puede ser llevado a cabo de N1 maneras o formas, el segundo  paso  de N2 maneras  o formas y el r-esimo paso de Nr maneras o formas, entonces esta actividad puede ser llevada a efecto de. El principio multiplicativo implica  que cada uno de los pasos de la actividad  deben ser llevados a efecto, uno tras otro. Si un evento E2 puede ocurrir de n2 maneras diferentes, y asi sucesivamente hasta el evento Ep  puede ocurrir  de np maneras diferentes, entonces el total de maneras distintas en que puede suceder  el evento ocurren E1 Y E2 …… Y Ep  es igual a producto.
PERMUTACIONES:
Una permutación es una combinación en donde el orden es importante. La notación para permutaciones es P(n,r) que es la cantidad de permutaciones de “n” elementos si solamente se seleccionan “r”. 
Ejemplo: Si nueve estudiantes toman un examen y todos obtienen diferente calificación, cualquier alumno podría alcanzar la calificación más alta. La segunda calificación más alta podría ser obtenida por uno de los 8 restantes. La tercera calificación podría ser obtenida por uno de los 7 restantes. 

La cantidad de permutaciones posibles sería: P(9,3) = 9*8*7 = 504 combinaciones posibles de las tres calificaciones más altas. 

Una permutación es una combinación en donde el orden es importante. La notación para permutaciones es P(n,r) que es la cantidad de permutaciones de “n” elementos si solamente se seleccionan “r”. 

Ejemplo: Si nueve estudiantes toman un examen y todos obtienen diferente calificación, cualquier alumno podría alcanzar la calificación más alta. La segunda calificación más alta podría ser obtenida por uno de los 8 restantes. La tercera calificación podría ser obtenida por uno de los 7 restantes. 

La cantidad de permutaciones posibles sería: P(9,3) = 9*8*7 = 504 combinaciones posibles de las tres calificaciones más altas. 

PERMUTACIONES SIN REPETICIÓN DE n ELEMENTOS TOMADOS TODOS A LA VEZ:

Ejemplo 4: ¿De cuántas formas diferentes se pueden ordenar las letras de la palabra IMPUREZA?

Solución: Puesto que tenemos 8 letras diferentes y las vamos a ordenar en diferentes formas, tendremos 8 posibilidades de escoger la primera letra para nuestro arreglo, una vez usada una, nos quedan 7 posibilidades de escoger una segunda letra, y una vez que hayamos usado dos, nos quedan 6, así sucesivamente hasta agotarlas, en total tenemos:

8 ´ 7 ´ 6 ´ 5 ´ 4 ´ 3 ´ 2 ´ 1 = 40320




PERMUTACIONES CIRCULARES:

Ahora estudiaremos algunos ejemplos de arreglos circulares, sabemos que si queremos sentar a cuatro personas una al lado de la otra en fila, el número de arreglos que podemos hacer es 4!; ahora bien, si las queremos sentar al rededor de una mesa circular, ¿de cuántas formas lo podemos hacer? 

Observemos los siguientes arreglos:




Por cada una de las permutaciones o arreglos circulares tenemos 4 de ellos diferentes en fila; esto es, el arreglo circular 1 puede leerse en sentido contrario a las agujas del reloj de las siguientes formas: ABCD, BCDA, CDAB, y DABC, que son 4 arreglos diferentes si fueran en filas; pero es un solo arreglo circular. Entonces, en lugar de tener 4! que es el número de arreglos en fila, tenemos solamente. 
  

Es todo arreglo de elementos en donde nos interesa el lugar o posición que ocupa cada uno de los elementos que constituyen dicho arreglo.

Para ver de una manera objetiva la diferencia entre una combinación y una permutación, plantearemos cierta situación.

Suponga que un salón de clase está constituido por 35 alumnos. a) El maestro desea que tres de los alumnos lo ayuden en actividades tales como mantener el aula limpia o entregar material a los alumnos cuando así sea necesario.

b) El maestro desea que se nombre a los representantes del salón (Presidente, Secretario y Tesorero).

Solución:

a) Suponga que por unanimidad se ha elegido a Daniel, Arturo y a Rafael para limpiar el aula o entregar material, (aunque pudieron haberse seleccionado a Rafael, Daniel y a Enrique, o pudo haberse formado cualquier grupo de tres personas para realizar las actividades mencionadas anteriormente).

¿Es importante el orden como se selecciona a los elementos que forma el grupo de tres personas?

Reflexionando al respecto nos damos cuenta de que el orden en este caso no tiene importancia, ya que lo único que nos interesaría es el contenido de cada grupo, dicho de otra forma, ¿quiénes están en el grupo? Por tanto, este ejemplo es una combinación, quiere decir esto que las combinaciones nos permiten formar grupos o muestras de elementos en donde lo único que nos interesa es el contenido de los mismos.

b) Suponga que se han nombrado como representantes del salón a Daniel como Presidente, a Arturo como secretario y a Rafael como tesorero, pero resulta que a alguien se le ocurre hacer algunos cambios, los que se muestran a continuación:

CAMBIOS

PRESIDENTE: Daniel Arturo Rafael Daniel

SECRETARIO: Arturo Daniel Daniel Rafael

TESORERO: Rafael Rafael Arturo Arturo

Ahora tenemos cuatro arreglos, ¿se trata de la misma representación?

Creo que la respuesta sería no, ya que el cambio de función que se hace a los integrantes de la representación original hace que definitivamente cada una de las representaciones trabaje de manera diferente, ¿importa el orden de los elementos en los arreglos?. La respuesta definitivamente sería sí, luego entonces las representaciones antes definidas son diferentes ya que el orden o la forma en que se asignan las funciones sí importa, por lo tanto es este caso estamos tratando con permutaciones.

A continuación obtendremos las fórmulas de permutaciones y de combinaciones, pero antes hay que definir lo que es n! (ene factorial), ya que está involucrado en las fórmulas que se obtendrán y usarán para la resolución de problemas.

n!= al producto desde la unidad hasta el valor que ostenta n.

n!= 1 x 2 x 3 x 4 x...........x n

Ejem.

10!=1 x 2 x 3 x 4 x.........x 10=3,628,800

8!= 1 x 2 x 3 x 4 x.........x 8=40,320

6!=1 x 2 x 3 x 4 x..........x 6=720, etc., etc.


PERMUTACIONES SIN REPETICION:


¿Qué son? Permutaciones sin repetición o permutaciones ordinarias de n elementos (de orden n) son los distintos grupos de n elementos distintos que se pueden hacer, de forma que dos grupos se diferencian únicamente en el orden de colocación. Se representa por Pn.

¿Cómo se forman?. Para construir las permutaciones sin repetición de un conjunto de n elementos, tenemos que construir grupos de n elementos sin que se puedan repetir. Se trata entonces de hacer lo mismo que se ha hecho con las variaciones sin repetición de orden n a partir de un conjunto de n elementos. 

De un elemento. A = {1}. Únicamente existe una permutación: 1.

De dos elementos. A = {1,2}. V2,2 = 2. Las dos permutaciones son: 12 y 21.

De tres elementos. A = {1,2,3}. V3,3 = 6. Las seis permutaciones son: 123 , 132 , 213 , 231 , 312 y 321.

De cuatro elementos. A = {1,2,3,4}. V4,4 = 24. Las veinticuatro permutaciones son: 1234 , 1243 , 1324 , 1342 , 1423 , 1432 , 2134 , 2143 , 2314 , 2341 , 2413 , 2431 , 3124 , 3142 , 3214 , 3241 , 3412 , 3421 , 4123 , 4132 , 4213 , 4231 , 4312 , 4321.

PERMUTACIONES CON REPETICION:

¿Qué son? Permutaciones con repetición de n elementos en las que el primer elemento se repite n1 veces, el segundo se repite n2 veces ... y el último se repite nk veces son los distintos grupos de n elementos que se pueden hacer de forma que en cada grupo, cada elemento aparezca el número de veces indicado y que dos grupos se diferencian únicamente en el orden de colocación. 

Para calcular el número de permutaciones con repetición se aplica la siguiente fórmula:

Son permutaciones de "m" elementos, en los que uno de ellos se repite " x1 " veces, otro " x2 " veces y así ... hasta uno que se repite " xk " veces.

Ejemplo: Calcular las permutaciones de 10 elementos, en los que uno de ellos se repite en 2 ocasiones y otro se repite en 3 ocasiones:

Es decir, tendríamos 302,400 formas diferentes de agrupar estos 10 elementos.

COMBINACIONES:

Una combinación, es un arreglo de elementos en donde no nos interesa el lugar o posición que ocupan los mismos dentro del arreglo. En una combinación nos interesa formar grupos y el contenido de los mismos.


Una combinación es un arreglo donde el orden NO es importante. La notación para las combinaciones es C(n,r) que es la cantidad de combinaciones de “n” elementos seleccionados, “r” a la vez. Es igual a la cantidad de permutaciones de “n” elementos tomados “r” a la vez dividido por “r” factorial. Esto sería P(n,r)/r! en notación matemática. 

Determina el número de subgrupos de 1, 2, 3, etc. elementos que se pueden formar con los "n" elementos de una nuestra. Cada subgrupo se diferencia del resto en los elementos que lo componen, sin que influya el orden.